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Hurricanes are the most destructive natural disasters in the United
States. The record of economic damage from hurricanes shows a
steep positive trend dominated by increases in wealth. It is necessary
to account for temporal changes in exposed wealth, in a process
called normalization, before we can compare the destructiveness of
recorded damaging storms from different areas and at different
times. Atmospheric models predict major hurricanes to get more
intense as Earth warms, and we expect this trend to eventually
emerge above the natural variability in the record of normalized
damage. However, the evidence for an increasing trend in normal-
ized damage since 1900 has been controversial. In this study, we
develop a record of normalized damage since 1900 based on an
equivalent area of total destruction. Here, we show that this record
has an improved signal-to-noise ratio over earlier normalization
schemes based on calculations of present-day economic damage.
Our data reveal an emergent positive trend in damage, which we
attribute to a detectable change in extreme storms due to global
warming. Moreover, we show that this increasing trend in damage
can also be exposed in existing normalized damage records by
looking at the frequency of the largest damage events. Our record of
normalized damage, framed in terms of an equivalent area of total
destruction, is a more reliable measure for climate-related changes in
extreme weather, and can be used for better risk assessments on
hurricane disasters.
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Hurricanes are the costliest natural disasters in the United
States (1). The damage costs from Hurricane Katrina have

been estimated to be $125 billion (2), which was 1% of gross
domestic product (GDP) for the entire United States in 2005 (3).
A better understanding of hurricane-related damage and its costs
over time is clearly of immense societal importance.
Climate model projections of near-term and future warming

scenarios indicate an increasing intensity of hurricanes in the
North Atlantic with medium confidence (4), and that the most
intense hurricanes will become more frequent and even intensify
further (5–8). Damage has a nonlinear relationship with hurri-
cane intensity (9–12), and total damage has been dominated by
the most extreme events. By simple extrapolation, we therefore
expect an increasing trend in hurricane damage to eventually
emerge in the records. However, a trend may be difficult to discern
with any statistical confidence, because damage is dominated by
only a few particularly intense hurricanes.
The economic damage from tropical storms over the last

century shows a rapid increase, but most of that increase can be
attributed to increased wealth exposure. We cannot directly
compare the damage from the 1926 Great Miami hurricane with
that from Hurricane Irma in 2017 without considering the in-
creased amount of valuable property exposed. The loss record
must be “normalized” in order to make past events comparable to
the present. Pielke and Landsea (13) pioneered the use of “loss
normalization” on hurricane damage. They found that the trend in
damage disappears after normalization and concluded that the
apparent rising losses were entirely due to changes in society. This
conclusion has been challenged on statistical grounds because it
relies on a simple least-squares trend of highly skewed nonnormal

data (14). Some authors have found no evidence for a trend in
normalized damages (12, 15, 16), whereas other authors find an
increasing trend (14, 17).
Traditional normalization schemes (13, 15, 16) do not attempt

to account for changes in vulnerability, which would result in
reduced losses from protection measures, stricter building codes,
and other adaptations. Several recent studies attempt to address
this by allowing for losses having an elasticity with wealth or
population (14, 17–20). However, the resulting elasticities of
these studies are contradictory, suggesting that this approach is
highly uncertain.
In this paper, we foster a normalization technique framing losses

in terms of a more physically appreciable quantity: an equivalent
area of total destruction (ATD). This approach accounts for in-
creases in wealth, population, and spatial differences in exposure.
Our approach, however, still does not account for changes in
vulnerability, and this must be kept in mind when assessing
long-term trends.

Methods
We aim at normalizing economic base damage ðBiÞ to adjust for change in
exposure that has happened since the time of hurricane landfall ðtiÞ. The
conventional approach to damage normalization (2, 13, 15, 16) adjusts for
change in wealth ðWÞ. We write the normalized damage (ND) as

NDi = Bi
Wðtnow ,ΩiÞ
Wðti ,ΩiÞ = Bi

WPCðtnowÞ=IðtnowÞ
WPCðtiÞ=IðtiÞ

IðtnowÞ
IðtiÞ

Pðtnow,ΩiÞ
Pðti ,ΩiÞ

= Bi
WPCðtnowÞ
WPCðtiÞ

Pðtnow,ΩiÞ
Pðti ,ΩiÞ ,

where I is an inflation adjustment, WPC is wealth per capita, and P is the
population in the region Ωi considered to be local to the ith landfall. This
normalization scheme adjusts damage with the ratio of change in estimated
local wealth (W = WPC · P), and thus aims at quantifying how much damage
the same hurricane would cause today.

Neumayer and Barthel (21) noted that a problem with the conventional
normalization scheme is that it adjusts for temporal changes in wealth, but
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fails to adjust for spatial differences. The concentration of wealth varies
substantially between rural and urban areas. This led them to design a dif-
ferent normalization scheme where they calculate an actual-to-potential-
loss ratio (APLR),

APLRi =
Bi

Wðti ,ΩiÞ,

where W is the estimated wealth in the region Ωi. The advantage of this
scheme is that it accounts for an additional stochastic source of variance
related to the location of landfall (21). APLR adjusts for levels of exposed
wealth across time and space, whereas the conventional approach only ac-
counts for the temporal changes in exposed wealth.

In this paper, we build upon the Neumayer and Barthel (21) methodology
but frame the results in terms of an equivalent ATD. We calculate ATDi by
multiplying APLR with the area of the exposed region Ωi. We write

ATDi =
AreaðΩiÞ ·Bi

Wðti ,ΩiÞ ,

such that the area of destruction is normalized by the actual-to-potential-loss
ratio. By framing the damage in terms of an area, wemake the normalization
more robust to how the region Ωi is defined.

There is no unique way to define the region Ωi, and different authors
have used different approaches. Regional wealth will scale roughly with
the areal extent of the region considered. Pielke et al. (15) chose Ωi as the
affected counties reported by the National Oceanic and Atmospheric
Administration Coastal Services Center, which may vary substantially in
size between events. ND is robust to these differences in areal extent, as
these differences would tend to cancel out in the wealth ratio. Neumayer
and Barthel (21) realized that the APLR scales with area, and that it is
necessary to consistently use the same area to ensure that the most de-
structive hurricanes, with a large regional impact, is rated with a higher
APLR than those of less destructive events. They used a 100 km × 100 km
square centered at the landfall location. Our ATD normalization ap-
proach combines the most desirable properties of the 2 other normali-
zations as it adjusts for geographic wealth variations as in APLR, but still
allows us to use the actual region of exposure for each event as in ND.
Now, we could define Ω based on the estimated wind field, when data
are available (as in ref. 22), or we could define it from the area that
contributed to losses for each event. Our objective is to construct an in-
dependent record that can be compared to storm characteristics data
such as wind speed, and therefore we cannot impose correlations by in-
cluding the same data in our normalization. We therefore let the region
depend only on the landfall location. Here, we simply define Ω to be the
10,000-km2 land-covered area nearest the location of landfall. We moti-
vate this choice by the typical spatial scale of the hurricane-force wind
field of major hurricanes, and by considering maps of destruction for re-
cent large events.

All 3 normalization schemes (ND, APLR, and ATD) rely on an estimate of
the regional wealth. Ideally, the measure of wealth should be in the same
form as the reported base damage. If B is purely insured losses, then it would
preferable thatWwas purely based on insured stock at risk. In this paper, we
have to make do with available data, which are limited for the early part of
the record. We follow Pielke and Landsea (13), and approximate regional
wealth by assuming that national wealth is distributed according to pop-
ulation density. We express this as follows:

Wðt,ΩÞ = WPCðtÞ ·Pðt,ΩÞ.

The specific datasets used for WPC and P are presented in Data. With this
approximation, ATD becomes inversely proportional to the average pop-
ulation density within the region, which is relatively constant even for large
changes in the size of Ω. A step by step summary of our implementation of
the ATD normalization scheme is outlined in SI Appendix.

All 3 normalizations adjust damage for temporal variability in wealth. We
therefore expect the normalized data to have a reduced spread compared to
the original base damage. A more useful normalization would account for
more of the variance. We also know that there is a relationship between
pressure, wind speed, and damage. We therefore use these considerations
to gauge the usefulness of different normalizations. A “better” normaliza-
tion will tend to have reduced spread and a more evident relationship be-
tween wind speed and damage. These 3 measures of normalized damage
are close to log-normally distributed (e.g., ref. 23); we therefore quantify the
spread from the variance of the logarithm of the normalized damage re-
cords. Authors have proposed both power-law relationships (10–12) and

exponential relationships (9) between wind speed and damage. Therefore,
we use the Spearman rank correlation coefficient as a clarity measure of the
wind−damage relationship.

We estimate trends in the normalized data using several methods. We
use ordinary least squares (OLS) linear regression on annually aggregated
values (13, 15, 16). We estimate the statistical significance and confi-
dence intervals using a standard bootstrap method (24). OLS regression is
somewhat problematic on highly skewed data (14), as a few extreme
events will dominate the fit. Estrada et al. (14) used Box−Cox regression
to address the skewness problem, where the residual misfit is evaluated in
a transformed space that is closer to normal. Unfortunately, the damage
record misses some minor events in the early part of the twentieth cen-
tury (25), which clearly will introduce a bias in trend estimates. The OLS
fits, on the other hand, are largely unaffected by missing minor storms, as
the residual sum of squares will be dominated by major events. Box−Cox
regression would, by design, allow minor storms to have more influence
on the trend, and would therefore be more affected by this bias. As an
alternative method for estimating the trend, we examine the frequency
of hurricane events above a damage threshold. We estimate the trend in
annual count data using Poisson regression. This approach is insensitive
to the shape of the distribution, and, by choosing a sufficiently high
threshold, at the expense of diluting the data, we can exclude the re-
cords of the smallest storms where frequencies may have been biased by
missing events (25).

Data. The direct economic damages from tropical storms making landfall
in the United States have historically been published in Monthly Weather
Review articles reported in current dollars (26). In more recent decades,
damage has been estimated using private insurance losses, and the flood
losses from the National Flood Insurance Program (26). These base dam-
age estimates for all tropical storms since 1900 have been compiled by
Pielke et al. (15), and updated by the ICAT catastrophe insurance company
(2). We use the ICAT dataset for the base damage record. The database is
missing records for some minor landfalling hurricanes in the early part of
the twentieth century, but should be complete with respect to the most
damaging events (25). The ICAT dataset also holds the Normalized
Damage following the Pielke et al. (15) approach, and we will use this for
comparison to our dataset. Two events in the ICAT dataset have zero
normalized damage, which we interpret to be due to truncation errors.
These events are excluded from the analysis. One concern with all nor-
malization methods is that the base damage dataset is not homoge-
neous throughout time. To assess the robustness, we also apply the ATD
normalization to 2 other datasets in SI Appendix: the Weinkle et al. (16)
dataset, and the US Billion-Dollar Weather and Climate Disasters
dataset (27).

The US population distribution is taken from Fang and Jawitz (28). This
dataset contains 1-km2 decadal population maps for the conterminous
United States from 1790 to 2010 using parsimonious models based on nat-
ural suitability, socioeconomic desirability, and inhabitability. We use their
most detailed model, as this accounts for socioeconomic desirability and its
relative importance, which are factors we judge to be particularly useful
near the coast.

We follow Pielke et al. (15) and use the Current-Cost Net Stock of Fixed
Assets and Consumer Durable Goods (29) as an estimate of national wealth.
This record spans from 1925 to 2015. The wealth record shows a close cor-
respondence with the Nominal GDP from Johnston and Williamson (3). We
therefore use a scaled version of the Nominal GDP to estimate wealth prior
to 1925 and after 2015 (Fig. 1). We divide wealth with the total population
to obtain WPC.

Each damage record is linked to the corresponding storm track in the
International Best Track Archive for Climate Stewardship (IBTrACS; ref. 30).
We extract the US landfall positions as the track location nearest the coast
line on the landfall date. IBTrACS also provides additional weather data such
as the wind speed and pressure at landfall.

Results
We have calculated the ATD for all events in the ICAT dataset
(Dataset S1). We ranked the events according to ATD, and a
subset of the most damaging events is shown in Table 1. The
hurricanes with the greatest ATD are Katrina (2005) and Harvey
(2017), which both resulted in an ATD greater than 5,000 km2. The
ATD normalization has a reduced spread relative to the ND
normalization (Table 2), and marginally higher rank correlation
with wind speeds than ND (Table 2).
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We aggregate normalized damage by year in Fig. 2 A and B.
Using bootstrapping, we find a significant positive trend in ATD
of 1,093 km2 per century (P < 0.01) (Fig. 2A and Table 2).
Regional variability in wealth will tend to mask any potential
signal, and we find that the positive trend is obscured and not
statistically significant in ND (Table 2; P = 0.23). The positive
trend is more clear in the frequency of events above a thresh-
old, regardless of what threshold is chosen (Fig. 2 C and D).
We observe that the frequency plots of ND and ATD appear
visually similar (Fig. 2 C and D). There is an increasing trend
in the frequency for all magnitudes ranging from 1.3× to 3.2×
per century, with the largest trends associated with the most-
damaging storms.

Discussion
We hypothesized that the ATD should have smaller spread than
the ND normalization, as it adjusts for the additional source of
variance associated with the spatial differences in wealth. We
find that this is indeed the case. The difference in variance is
0.46, which we note is 29% of the present day’s spatial variance

in regional wealth ½varðlogðW ðtnow,ΩiÞÞÞ= 1.59�. The reduction in
variance is a substantial improvement, as 2σ corresponds to a
factor 2.5 change. By removing the stochastic component asso-
ciated with a rural vs. urban landfall, we have increased the
chances of exposing signals in the noise. This is demonstrated by
the improved rank correlation with both wind speed and pres-
sure (Table 2).
It is of great concern whether there is an increasing trend in

hurricane damage. Pielke and coworkers (13, 15, 16) report that
there is no trend in conventionally normalized damage. The ATD
exposes an emergent positive trend in hurricane damage which
was hidden in the spatial “noise” of the ND (Fig. 2 and Table 2).
The observed increasing trend in hurricane damage seen in ATD
is consistent with our expectations that the major hurricanes will
become stronger in a warming climate. We have some doubts
about using OLS on highly skewed data but have used it here to
facilitate comparison with published literature. An alternative
method is to look at the frequency of damage events above a
threshold. We find positive trends for all magnitudes in both ND
and ATD, and most are significant (Fig. 2 C and D). A few minor
events may be missing in the earliest part of the record which will
bias the frequency trends for small magnitudes. Pielke (25) argues
that no moderate storms with ND > $1 billion are missing in the
entire record, and here we correspondingly argue that no events
with ATD > 50 km2 are missing. We therefore disregard the
frequency trend estimates below these thresholds. The most
damaging storms have been increasing by a factor of 3.3% per
century, whereas moderate storms have been only been in-
creasing at a rate of 1.4× per century (Fig. 2C). This pattern is
consistent with modeling which finds that warming is associated
with more-frequent and even stronger major hurricanes in the
Atlantic (4–8). This conclusion is robust to the choice of input
dataset (SI Appendix).
The similarity between the frequency plots for ND and ATD

may be surprising considering the reduced spatial noise in the
ATD record. However, hurricane damage events span several
orders of magnitude, which means that multiplicative errors can
be quite high without causing large reshuffling in the ranking of
events. This also means that the frequency plots like those in Fig.
2 C and D are robust with respect to changes in normalization.

Fig. 1. WPC derived from the Current-Cost Net Stock of Fixed Assets and
Consumer Durable Goods (29) compared to the scaled Nominal GDP per
capita from Johnston and Williamson (3) which we use to extend WPC.

Table 1. The 20 storms with the greatest ATD

Storm Landfall date Base damage (Mill. USD) ND (Mill. USD2018) ATD (km2)

Harvey 2017 Aug 26 125,000 132,690 11,835
Katrina 2005 Aug 29 125,000 148,240 7,621
Great Miami 1926 Sep 18 76 242,750 3,931
Carla 1961 Sep 11 325 22,270 3,728
Galveston 1900 Sep 09 30 171,510 2,826
Rita 2005 Sep 24 18,500 23,110 2,697
Storm 2 in 1919 1919 Sep 14 20 18,460 2,387
Storm 7 in 1948 1948 Sep 22 12 5,890 2,329
Irma 2017 Sep 10 50,000 52,970 2,315
Galveston 1915 Aug 17 50 121,200 2,215
Hazel 1954 Oct 15 281 36,450 2,069
Irene 2011 Aug 27 13,500 17,160 1,925
Wilma 2005 Oct 24 19,000 33,410 1,825
Isabel 2003 Sep 18 5,500 11,010 1,804
Lake Okeechobee 1928 Sep 17 25 63,830 1,799
Hugo 1989 Sep 22 7,000 27,430 1,781
Ivan 2004 Sep 16 20,500 36,910 1,689
Betsy 1965 Sep 10 1,281 17,750 1,633
Opal 1995 Oct 04 4,700 16,510 1,489
Floyd 1999 Sep 16 6,500 16,030 1,418

The full dataset can be found in Dataset S1. Mill. USD, million US dollars.
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Conclusion
We have developed a normalization scheme for hurricane losses
based on the concept of an equivalent ATD (Fig. 2). Contrary
to the conventional ND, this ATD normalization adjusts for
spatial variability in wealth. This leads to reduced scatter in the
normalized series, and slightly improved correlations with winds
(Table 2). The reduced noise exposes an increasing trend in
ATD that was otherwise barely detectable in ND using OLS on
annually aggregated data (Fig. 2 A and B and Table 2). The
increasing trend is even more evident when using a more ap-
propriate statistical method which is insensitive to the skewness

of the distribution (Fig. 2 C and D). We avoid statistical
challenges associated with missing small events, and the
highly skewed distribution, by examining the frequency of
events above a range of thresholds. The rate of major dam-
age events is increasing significantly in both ATD and ND
(Fig. 2 C and D). There is evidence that the proportion of
strong hurricanes has increased (8, 31). This is also consis-
tent with numerical modeling simulations, which generally
indicate an increase in mean hurricane peak intensity and
the frequency of very intense hurricanes in a warming world
(32–34). Furthermore, projected changes in hurricane tracks
or hurricane areas of occurrence show some related features,
most pronounced in the western North Pacific (34). Some
studies project either poleward or eastward expansion of
hurricane occurrence (7). A poleward expansion of the lat-
itude of maximum hurricane intensity is consistent with the
detected observed signals (35, 36) and with a Hadley circu-
lation expansion (37).
In accordance, we find that the frequency of the most

damaging storms is increasing at a higher rate than that of
moderately damaging storms (Fig. 2 C and D). This conclusion
is robust to alternative base damages data (SI Appendix). The
increasing rate of the strongest storms is statistically significant.
We find that our approach is very robust to details of the
normalization scheme, as is evident from the similarity between
Fig. 2 C and D.

Table 2. Summary statistics of ATD and NDICAT

Period ATD NDICAT

var(log(·)) Full 5.88 6.34
C(·,wind) Full 0.63 0.62
C(·,pressure) Full −0.68 −0.68
C(·,wind) 1980–2018 0.63 0.60
C(·,pressure) 1980–2018 −0.70 −0.67
OLS trend

(Fig. 2 A and B)
Full 1,093 km2/cen

(459 to 1,757)
$8 billion/cen
(−10 to 26)

ATD correlates slightly better with wind and pressure at landfall than ND,
and has reduced variance. The spearman rank correlation is denoted with C.
Ranges are 5 to 95% uncertainties from bootstrapping; cen, century.

A B

C D

Fig. 2. Comparison of hurricane losses normalized using 2 different normalization techniques. (A) ATD, losses framed as an ATD. (B) ND, conventional
normalized damage from ICAT. Red shows the OLS linear trends of the data; bn, billion. (C and D) The corresponding decadal frequency of normalized
damage events above different thresholds for (C) ATD and (D) ND. Dotted lines show trend in frequency from Poisson regression. The relative frequency
increase per century is shown as numbers on the right. Asterisks indicate the trend is significantly greater than one (P < 0.05).
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We note that the framing of damage in terms of an equivalent
ATD is transferable to other types of natural disasters. This
adjusts damage for temporal and spatial changes in wealth. The
ATD does not adjust for changes in vulnerability, which there-
fore has to be considered separately.
We acknowledge that the ATD could be further refined by

explicitly considering the size of the wind field of the indi-
vidual hurricanes when choosing the exposed region (see,
e.g., ref. 20). The estimated regional wealth can also be
modeled in more detail rather than using a single country-
wide estimate of wealth per capita. In this paper, however, we

have clearly been limited by the available data in the early
20th century.

Data Availability. The damage data are available in Dataset S1.
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